Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Some examples of my latest work on Human Mesh Recovery
Published in , 2019
The Clothilde Project is a Franco-Swiss partnership between two universities and two companies. This project aims to minimize surgical risks by offering original and reliable devices for orthopaedic shoulder surgery. For this purpose, an osteosynthesis implant to treat proximal and diaphyseal traumatic fractures using metal additive manufacturing is proposed. This device consists of a distal intramedullary locked system combined with a proximal locking system providing great flexibility in bone fragments reconstruction. Specific tools have been developed to confirm the mechanical strength of this medical device. The surgical technique has been validated in anatomy laboratory by a group of surgeons. Five patents have been applied on the chosen solutions (implants and instumentations) which are currently being industrialised.
Recommended citation: Goyallon, Thibault https://theses.hal.science/tel-03548220
Published in , 2019
L’invention concerne un instrument (1) de guidage d’un organe de fixation au travers d’une tige intramédullaire (2) s’étendant selon un axe longitudinal, l’instrument (1) étant pourvu d’un système de guidage (4) d’un organe de fixation au travers de la tige (2) et selon au moins une direction transversale. Selon l’invention, l’instrument (1) comprend un support (3) présentant : - des moyens de réception (5) de la tige intramédullaire (2) avec capacité de rotation de ladite tige (2) autour de l’axe longitudinal de la tige (2); - des moyens de coulissement relatif entre la tige intramédullaire (2) et le système de guidage (4). Figure pour l’abrégé : Fig.2
Recommended citation: Goyallon, Thibault https://patentimages.storage.googleapis.com/72/91/ef/11ffb65fff6e2e/FR3096884A1.pdf
Published in , 2019
Selon l’invention, la tige intramédullaire (2) comprend au moins une broche (3) déplaçable en translation dans un canal longitudinal (5) formé dans la tige intramédullaire (2) par l’intermédiaire de moyens (9) de poussée/traction disposés en partie proximale de la tige intramédullaire (2) ; la tige intramédullaire (2) comportant au moins un orifice (4) ménagé dans une partie distale de sorte qu’un déplacement de la broche (3) vers l’orifice (4) entraine une sortie d’une extrémité de la broche (3) à travers l’orifice (4) pour permettre la fixation distale de la tige intramédullaire (2). Figure pour l’abrégé Fig. 3
Recommended citation: Goyallon, Thibault https://patentimages.storage.googleapis.com/72/91/ef/11ffb65fff6e2e/FR3096884A1.pdf
Published in , 2019
L’invention concerne un implant (1) orthopédique comprenant au moins une première partie (2) et une deuxième partie (3) destinées à être assemblées entre elles par l’intermédiaire d’une vis (4) de serrage traversant un premier orifice (21) débouchant ménagé au travers de la première partie (2) et venant en prise dans un deuxième orifice (31) ménagé dans la deuxième partie (3). Selon l’invention, la vis (4) de serrage comprend : - une première extrémité (41) pourvue d’un filet orienté selon un premier sens coopérant avec un taraudage ménagé dans le premier orifice (21) et orienté dans le même premier sens ; - une deuxième extrémité (42) pourvue d’un filet orienté selon un deuxième sens inverse coopérant avec un taraudage ménagé dans le deuxième orifice (31) et orienté dans le même deuxième sens inverse ; de sorte que la rotation de la vis (4) dans le deuxième sens permet le rapprochement de la première partie (2) et de la deuxième partie (3) pour leur assemblage, et la rotation de la vis (4) dans le premier sens permet l’éloignement de la première partie (2) et de la deuxième partie (3) pour leur désassemblage. Figure pour l’abrégé : Fig. 4
Recommended citation: Goyallon, Thibault https://patentimages.storage.googleapis.com/a4/f9/f9/a0c8c8ba6837ee/FR3096882A1.pdf
Published in , 2019
The invention relates to a fixation system between a medical device and at least one portion of a bone, characterised in that it comprises an elongate portion intended to be inserted into the bone, in particular into the medullary cavity and/or into the proximal or distal ends, the elongate portion having a wall consisting of meshes through which at least one fixing member can pass, according to a position and orientation that are not predefined, and which apply, by elastic, plastic or elastic-plastic deformation, a transverse and/or axial pressure force onto the fixing member, the fixing member being intended to also pass through the portion of the bone in order to ensure rigid fixation between the bone and the medical device.
Recommended citation: Goyallon, Thibault https://patentimages.storage.googleapis.com/84/ae/f7/4b42d99370c8c1/US20220323124A1.pdf'
Published in , 2020
The invention relates to a shoulder prosthesis comprising a diaphyseal part extending along a diaphyseal axis and on which an epiphyseal part is mounted, the epiphyseal part having an upper face which is inclined along a front plane with respect to the diaphyseal axis, and a lower central face bearing against a complementary upper face of the diaphyseal part. According to the invention, the epiphyseal part is reversible by rotation through 180° about an axis normal to the lower central face bearing against the epiphyseal part to modify the inclination of the upper face of the epiphyseal part.
Recommended citation: Goyallon, Thibault https://patentimages.storage.googleapis.com/01/cb/82/4b9b440489b246/WO2020245514A1.pdf
Published in Sensors, 2021
Inertial sensors are increasingly used in rodent research, in particular for estimating head orientation relative to gravity, or head tilt. Despite this growing interest, the accuracy of tilt estimates computed from rodent head inertial data has never been assessed. Using readily available inertial measurement units mounted onto the head of freely moving rats, we benchmarked a set of tilt estimation methods against concurrent 3D optical motion capture. We show that, while low-pass filtered head acceleration signals only provided reliable tilt estimates in static conditions, sensor calibration combined with an appropriate choice of orientation filter and parameters could yield average tilt estimation errors below 1.5° during movement. We then illustrate an application of inertial head tilt measurements in a preclinical rat model of unilateral vestibular lesion and propose a set of metrics describing the severity of associated postural and motor symptoms and the time course of recovery. We conclude that headborne inertial sensors are an attractive tool for quantitative rodent behavioral analysis in general and for the study of vestibulo-postural functions in particular.
Recommended citation: Fayat, R.; Delgado Betancourt, V.; Goyallon, T.; Petremann, M.; Liaudet, P.; Descossy, V.; Reveret, L.; Dugué, G.P. Inertial Measurement of Head Tilt in Rodents: Principles and Applications to Vestibular Research. Sensors 2021, 21, 6318. https://doi.org/10.3390/s21186318 https://www.mdpi.com/1424-8220/21/18/6318
Published:
Published:
Published:
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2016
Course: Image Processing with Python
Instructor: Ludovic Charleux
Description: This course covered advanced topics in image processing using Python. For more details, refer to the course materials.
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2016
Course: Continuum Mechanics
Instructor: Emile Roux
Description: This course provided a comprehensive overview of continuum mechanics, covering both static and dynamic aspects. Topics included stress and strain analysis, deformation theories, material behavior under various loading conditions, and dynamic responses to forces and moments. The course aimed to develop a deep understanding of how materials and structures behave under different mechanical scenarios.
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2017
Course: Image Processing with Python
Instructor: Ludovic Charleux
Description: This course covered advanced topics in image processing using Python. For more details, refer to the course materials.
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2017
Course: Continuum Mechanics
Instructor: Emile Roux
Description: This course provided a comprehensive overview of continuum mechanics, covering both static and dynamic aspects. Topics included stress and strain analysis, deformation theories, material behavior under various loading conditions, and dynamic responses to forces and moments. The course aimed to develop a deep understanding of how materials and structures behave under different mechanical scenarios.
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2018
Course: Image Processing with Python
Instructor: Ludovic Charleux
Description: This course covered advanced topics in image processing using Python. For more details, refer to the course materials.
Master course, Savoie Mont Blanc University, Polytech Annecy Chambéry, 2018
Course: Continuum Mechanics
Instructor: Emile Roux
Description: This course provided a comprehensive overview of continuum mechanics, covering both static and dynamic aspects. Topics included stress and strain analysis, deformation theories, material behavior under various loading conditions, and dynamic responses to forces and moments. The course aimed to develop a deep understanding of how materials and structures behave under different mechanical scenarios.